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Abstract. We compute by numerical integration of the Dirac equation the number of quark-antiquark pairs
produced in the classical color fields of colliding ultrarelativistic nuclei. Results for the dependence of the
number of quarks on the strength of the background field, the quark mass and time are presented. We also
perform several tests of our numerical method. While the number of qq̄ pairs is parametrically suppressed
in the coupling constant, we find that in this classical field model it could even be compatible with the
thermal ratio to the number of gluons.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 25.75.-q Relativistic heavy-ion
collisions – 12.38.Mh Quark-gluon plasma

1 Introduction

Due to large densities, implying large occupation num-
bers, the initial stages of an ultrarelativistic heavy-ion col-
lision may be be dominated by strong classical color fields.
There is a twofold interest in calculating the production of
quark-antiquark pairs from these classical fields. Firstly,
although heavy-quark production is in principle calcula-
ble perturbatively, it would be interesting to understand
whether these strong color fields influence the result. Sec-
ondly, being able to compute both gluon and quark pro-
duction in the same framework would give insight into the
chemical equilibration of the system and the consistency
of the assumption of gluon dominance. The number of
quark pairs present in the early stages of the system also
has observable consequences in the thermal photon and
dilepton spectrum.

In this paper we shall present first results [1,2] of a
numerical computation of quark-antiquark pair produc-
tion from the classical fields of the McLerran-Venugopalan
(MV) model. The equivalent calculation, although in the
covariant gauge unlike the present computation, has been
carried out analytically to lowest order in the densities
of both color sources (“pp”-case) in ref. [3] and to lowest
order in one of the sources (“pA”-case) in ref. [4]. The
corresponding calculation in the Abelian theory [5,6], of
interest for the physics of ultraperipheral collisions, can
be done analytically to all orders in the electrical charge
of the nuclei. Quark pair production has also been studied
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in a related “CGC” approach in refs. [7,8] and in a more
general background field in ref. [9].

2 The numerical calculation

Our calculation of pair production relies on the numerical
calculation of the classical background color field, in which
we solve the Dirac equation.

2.1 The background field

In the classical field model the background gluon field is
obtained from solving the Yang-Mills equation of motion
with the classical color source Jν given by transverse color
charge distributions of the two nuclei boosted to infinite
energy:

[Dµ, F
µν ] = Jν = δν+ρ(1)(xT )δ(x

−) + δν−ρ(2)(xT )δ(x
+).
(1)

In the MV model [10] the color charges are taken to be
random variables with a Gaussian distribution

〈ρa(xT )ρ
b(yT )〉 = g2µ2δabδ2(xT − yT ) (2)

depending on the coupling g and a phenomenological pa-
rameter µ. The combination g2µ is closely related to the
saturation scale Qs. Collisions of two ions were first stud-
ied analytically using this model in ref. [11] and the way
of numerically solving the equations of motion in a Hamil-
tonian formalism in the Aτ = 0 gauge was formulated in
ref. [12].
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Fig. 1. Domains of different time dependences. The fermion
amplitude is a sum of two terms: one interacting first with the
left-moving nucleus, then the right-moving one, and vice versa.

A
(1,2)
i are pure gauges and Ai, Aη is a numerically computed

color field. In the perturbative limit of the Abelian theory these
terms correspond to the u and t channel diagrams in fig. 12.

2.2 Solving the Dirac equation

Our method of solving the Dirac equation is explained in
more detail and the numerics tested in a 1+1-dimensional
toy model in ref. [13]. The domains of spacetime involved
in the calculation are illustrated in fig. 1.

One starts in the the infinite past t → −∞ with a
negative-energy plane-wave solution ψ(x) = eiq·xv(q). The
Dirac equation can then be integrated forward in time ana-
lytically to the future light cone (τ 2=2x+x− = 0, x±>0)
because the background field in the intermediate region is
a pure gauge. This gives an initial condition, given ex-
plicitly in eq. (16) of ref. [13], for ψ(τ = 0, z,xT ). Start-
ing from this initial condition, we then solve numerically
the Dirac equation for τ ≥ 0 using the coordinate sys-
tem τ, z,xT . The reason for this choice of coordinates is
the following. It not feasible to have degrees of freedom at
different energy scales (

√
s and Qs) present in the same

numerical calculation. Thus the temporal coordinate is
chosen to be τ in order to include the hard sources of
the color fields only in the initial condition. Although the
background field is boost invariant, the longitudinal coor-
dinate cannot be disregarded in this computation because
the rapidities of the quark and the antiquark are corre-
lated. The longitudinal coordinate is chosen as z, not the
usual dimensionless η = tanh−1(z/t), because the initial
condition on the light cone involves dimensionful longitu-
dinal momentum scales (coming from the four momentum
q), and in order to represent them on a spatial lattice at
τ = 0 a dimensionful coordinate is needed.

The pair production amplitudeMτ at proper time τ is
then obtained by fixing the Coulomb gauge in the trans-
verse plane ∂iAi = 0 and projecting the spinor wave func-
tion ψ(τ, z,xT ) onto positive-energy states φp(τ, z,xT ) ≡
e−ip·xu(p):

Mτ (p, q)≡
∫

τdzd2
xT√

τ2 + z2
φ†p(τ, z,xT )γ

0γτψq(τ, z,xT ). (3)
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Fig. 2. Amplitude (in lattice units) at τ = 0.25 fm as a func-
tion of ∆y for different antiquark momenta on a 1802 lattice
(see text in sect. 2.4 for the notation).
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Fig. 3. Dependence on proper time τ of the number of pairs
of one flavor per unit rapidity dN/dy for g2µ = 2 GeV and
different quark masses. The lowest curve corresponds to g2µ =
1 GeV.

For times larger than the formation time of the quark pair

τ & 1/
√

m2 + qT
2 this amplitude can be interpreted as

the amplitude for producing quark-antiquark pairs.

2.3 Results

Figure 2 shows |Mτ |2 as a function of ∆y = yp − yq inte-
grated over pT for different qT . When integrating also over
the rapidity difference∆y one gets the number of pairs per
unit rapidity as a function of τ , shown in fig. 3. It can be
seen that the quark production amplitude reaches a finite
value instantaneously and then increases slowly with τ .

The physical parameters of the calculation are g2µ
characterizing the strength of the background field, the
nuclear radius RA and the quark mass m. The depen-
dence on g2µ and m of the number of pairs at τ = 0.25 fm
is shown in figs. 4 and 5. The number of pairs is seen
to increase with g2µ, but not as strongly as the (g2µ)2-
dependence predicted by a simple dimensional analysis ar-
gument. The result also decreases with increasing quark
mass, but the perturbative 1/m2 behavior is not reached
in our calculation. The transverse momentum spectra of
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Fig. 4. Dependence of the number of quark pairs on quark
mass at a fixed proper time, τ = 0.25 fm, and for two values
of g2µ.
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Fig. 5. Dependence of the number of quark pairs on g2µ at
a fixed proper time, τ = 0.25 fm, and for quark mass m =
0.3 GeV.

the (anti)quarks as a function of qT is shown for different
quark masses and saturation scales in figs. 6 and 7.

2.4 The numerical method

Our numerical method is presented in more detail in
refs. [13,14]. The discretization in the transverse plane
is straightforward, but in the longitudinal direction the
(τ, z)-coordinate system can easily result in an unstable
one. In ref. [13] a stable scheme was found by using an
implicit method, where at each timestep one solves a lin-
ear system of equations for the spinor at different points
on the longitudinal lattice.

The numerical computation depends on several dis-
cretization parameters: the lattice size and spacing in the
longitudinal (Nz and dz) and the transverse (N 2 and a)
directions and the timestep dτ . To check our numerical
method we studied the dependence on these parameters.
We have also tested the numerical method in the analyt-
ically solvable case of zero external field and tested how
well our numerical implementation preserves boost invari-
ance.

The dependence on the longitudinal lattice parame-
ters, dz and Nz, is studied in figs. 8 and 9. Our convention
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Fig. 6. Transverse momentum spectrum of (anti)quarks for
g2µ = 2 GeV at a fixed proper time, τ = 0.25 fm, and for
different quark masses.
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Fig. 7. Transverse momentum spectrum of (anti)quarks for
quark mass m = 0.3 GeV and for different g2µ at a fixed
proper time, τ = 0.25 fm.

is that the longitudinal lattice has points i = −Nz, . . . , Nz,
i.e. 2Nz + 1 points and the length of the longitudinal lat-
tice is 2Nzdz. The results presented earlier in this paper
are for dz = 0.2a and Nz = 200 and have not been extrap-
olated to the infinite volume limit Nzdz →∞. A finite dz
leads to a lattice cutoff in pz and thus sets a maximum for
the accessible interval in ∆y. As can be seen from fig. 2
and understood as a consequence of the initial condition,
eq. (16) of ref. [13], the accessible region in ∆y is smaller
for small transverse momenta qT . This cutoff in ∆y is also
apparent in figs. 8, 10 and 11.

We have so far only used transverse lattices of 1802

points. The lattice momenta can be represented as
qT = (qx, qy) with qx,y = −89, . . . , 90, of which the
qx,y = −45, . . . , 45 are non-doubler modes. We explicitly
leave out the doubler modes both in the initial condition
(qT modes) and in the projection to the positive-energy
state (pT modes). This limits the volume of the transverse
momentum space to 1/4 of the bosonic case. Also the
spectrum of quarks (see figs. 6 and 7) decreases so slowly
for large transverse momenta that some dependence on
the 1/a lattice cutoff is expected. Further computations
with larger transverse lattices are still needed to study
this issue.
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Fig. 9. Number of pairs as a function of (half) the volume
of the longitudinal lattice Nxdz for two different values of dz.
The lines are fits of the form A+B/(Nzdz)

2.

The memory requirement for a 400× 1802 lattice with
4× (Nc = 3) complex components in one spinor is 1.2 GB
in single precision. This can still be achieved on one pro-
cessor, but for larger lattices a parallelized version of the
program will have to be used. The numerical computa-
tions have been done on the “ametisti” cluster, a 66 × 2
processor AMD Opteron Linux cluster at the University
of Helsinki, using over 1017 flop of CPU time so far.

As explained in fig. 1, the amplitude is a sum of two
terms. For a zero external color field these two terms, with
an absolute value |Mτ | = 1/ cosh(∆y/2) have an opposite
sign and cancel each other. Comparing the analytically
and numerically computed amplitudes is a nontrivial test
of the numerical computation. Figure 10 shows how the
analytical result for one branch and the cancellation when
both branches are included are reproduced by our numer-
ical method for one value of qT (qT = (5, 5) on a 1502

lattice).

Due to the boost invariance of the background field the
amplitude Mτ should not depend on the rapidities yq and
yp separately, but only on the difference ∆y ≡ yp−yq. Be-
cause the calculation is done using z, not rapidity, as the
longitudinal coordinate, verifying the boost invariance of
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Fig. 10. The amplitude in a zero external color field for two
different timesteps dτ . Plotted are the absolute value of the
amplitude for only one and both branches of the amplitude
(see text and fig. 1).
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Fig. 11. The amplitude |Mτ |
2 as a function of the rapidity
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the resulting amplitude is a nontrivial test of the numeri-
cal method. Figure 11 shows that the number of pairs is,
taking into account numerical inaccuracies, not affected
by the choice of yq.

3 Discussion

It has conventionally been assumed that the initial state
of a heavy-ion collision is dominated by gluons. This is the
result, e.g., when both quarks and gluons are produced in
2 → 2 collisions of collinear partons [15]. Indeed, when
comparing the cross-sections of the 2 → 2 processes for
quark pair production and gluon production (see fig. 12),
the diagrams for quark pair production are suppressed by
a factor of ∼ 210 = 7× 30, of which the factor 7 is due to
color factors.

In the color glass condensate framework the picture is
quite different. Whereas the quark pairs are produced in
a 2→ 2 process similarly to collinear factorisation, gluons
are produced in what reduces in the perturbative limit
to a 2 → 1 process with a smaller power of the coupling
g. It is therefore less straightforward to compare the two.
Strictly perturbatively quark pair production is of higher
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Fig. 12. The 2 → 2 processes for producing quark pairs and gluons from an initial gluon distribution.

order in g. But the phenomenologically relevant value is
g ≈ 2, and thus higher orders in g are not suppressed by
much when looking at the actual numbers. One can then
legitimately ask whether one should, for consistency, also
include quantum corrections (higher orders in g) in the
computation of gluon production.

Brushing aside these remarks and boldly taking our
numerical results at their face value would lead to the
following scenario. It was earlier assumed that the initial
state of a heavy-ion collision is dominated by gluons. If the
subsequent evolution of the system conserves entropy and
thus, approximately, multiplicity this would mean ∼ 1000
gluons in a unit of rapidity. In the classical field model
this corresponds [16] to g2µ ≈ 2 GeV. Our results seems
to point to a rather large number of quark pairs present
already in the initial state. One could envisage a scenario
where for g2µ ≈ 1.3 GeV these 1000 particles could consist
of & 400 gluons, & 300 quarks and & 300 antiquarks (take
the lowest curve from fig. 3 and multiply by Nf = 3). This
would be close to the thermal ratio ofNg/Nq = 64/(21Nf).

4 Conclusions

We have calculated quark pair production from the classi-
cal background field of the McLerran-Venugopalan model
by solving the 3+1-dimensional Dirac equation numeri-
cally in this classical background field. We find that the
number of quarks produced is large, pointing to a possi-
ble fast chemical equilibration of the system. The mass
dependence of our result is surprisingly weak and we are
not yet able to make any conclusions on heavy quarks until
studying the numerical issues involved.
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